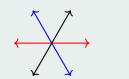
Saturating the Welch Bound for Frames over Finite Fields

lan Jorquera Joint with: Emily J King

Colorado State University College of Natural Sciences, Mathematics Department

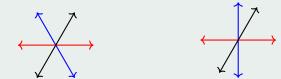
May 21, 2025

Line Packings: Can you pack *n* lines in \mathbb{R}^d or \mathbb{C}^d , where every line is maximally spread apart?



Goal: Maximize pairwise acute angles, or minimize $\cos^2 \theta$

Line Packings: Can you pack *n* lines in \mathbb{R}^d or \mathbb{C}^d , where every line is maximally spread apart?



Goal: Maximize pairwise acute angles, or minimize $\cos^2 \theta$

Given n lines, represent each by a unit vector

$$\Phi = \begin{bmatrix} | & | & | \\ \varphi_1 & \varphi_2 & \cdots & \varphi_n \\ | & | & | \end{bmatrix} \in \mathbb{F}^{d \times n}$$

New Goal: Minimize $\max_{i \neq j} |\langle \varphi_i, \varphi_j \rangle|^2$

Finding Optimal Packings

Given *n* lines in \mathbb{R}^d or \mathbb{C}^d , represented each by a unit vector

$$\Phi = \begin{bmatrix} | & | & | \\ \varphi_1 & \varphi_2 & \cdots & \varphi_n \\ | & | & | \end{bmatrix}$$

New Goal: Minimize $\max_{i \neq j} | \langle \varphi_i, \varphi_j \rangle |^2$

Finding Optimal Packings

Given *n* lines in \mathbb{R}^d or \mathbb{C}^d , represented each by a unit vector

$$\Phi = \begin{bmatrix} | & | & | \\ \varphi_1 & \varphi_2 & \cdots & \varphi_n \\ | & | & | \end{bmatrix}$$

New Goal: Minimize $\max_{i \neq j} |\langle \varphi_i, \varphi_j \rangle|^2$

Welch bound

$$\max_{i\neq j} |\langle \varphi_i, \varphi_j \rangle|^2 \geq \frac{n-d}{d(n-1)}$$

With equality if and only if

- Equiangular: $|\langle \varphi_i, \varphi_j \rangle|^2 = b$ for all $i \neq j$ $\left. \right\} \Phi$ is an ETF
- **Tightness**: $\Phi \Phi^* = cl$

Understanding Optimal Line Packings

Optimal line packings are understood in two ways

Geometrically as ETFs

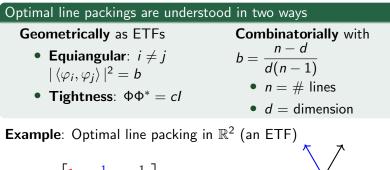
- Equiangular: $i \neq j$ $|\langle \varphi_i, \varphi_j \rangle|^2 = b$
- **Tightness**: $\Phi \Phi^* = cI$

Combinatorially with $b = \frac{n-d}{d(n-1)}$

•
$$n = \#$$
 lines

• d = dimension

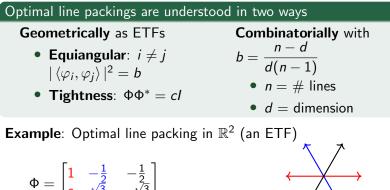
Understanding Optimal Line Packings



$$\Phi = \begin{bmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} \end{bmatrix}$$

$$\theta = \frac{2\pi}{3} \text{ and } b = |-1/2|^2 = 1/4 = \frac{3-2}{2(3-1)}$$

Understanding Optimal Line Packings



$$\begin{bmatrix} 0 & \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} \end{bmatrix}$$

 $\theta = \frac{2\pi}{3}$ and $b = |-1/2|^2 = 1/4 = \frac{3-2}{2(3-1)}$

Goal of talk: Do this but over finite fields.

Line Packings over Finite Fields

Real IP Spaces	\rightsquigarrow	Orthogonal Geometries
\mathbb{R}^{d}	\rightsquigarrow	\mathbb{F}_q^d , where $q=p^\ell$ is odd.
Inner Products	$\sim \rightarrow$	Non-Degenerate Scalar Products

Real IP Spaces	\rightsquigarrow	Orthogonal Geometries
\mathbb{R}^{d}	\rightsquigarrow	\mathbb{F}_q^d , where $q=p^\ell$ is odd.
Inner Products	\rightsquigarrow	Non-Degenerate Scalar Products
$\langle -, - \rangle : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$		
$\langle x, y \rangle = \langle y, x \rangle$		
$\langle x, - \rangle : \mathbb{R}^d \to \mathbb{R}$ linear		

Real IP Spaces	\rightsquigarrow	Orthogonal Geometries
\mathbb{R}^d	\rightsquigarrow	\mathbb{F}_q^d , where $q=p^\ell$ is odd.
Inner Products	\rightsquigarrow	Non-Degenerate Scalar Products
$\langle -, - \rangle : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$		
$\langle x, y \rangle = \langle y, x \rangle$		
$\langle x, - angle : \mathbb{R}^d o \mathbb{R}$ linear		
$\langle x,x angle > 0 ext{ iff } x eq 0$		

Real IP Spaces	\rightsquigarrow	Orthogonal Geometries
\mathbb{R}^d	\rightsquigarrow	\mathbb{F}_q^d , where $q = p^\ell$ is odd.
		•
Inner Products	\rightsquigarrow	Non-Degenerate Scalar Products
$\langle -, - \rangle : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$		$\langle -, - \rangle : \mathbb{F}_q^d \times \mathbb{F}_q^d o \mathbb{F}_q$
$\langle x,y angle = \langle y,x angle$	\rightsquigarrow	$\langle x,y\rangle = \langle y,x\rangle$
$\langle x, - angle : \mathbb{R}^d o \mathbb{R}$ linear		$\langle x, - angle : \mathbb{F}_{\boldsymbol{q}}^{\boldsymbol{d}} ightarrow \mathbb{F}_{\boldsymbol{q}}$ linear
$\langle x,x angle > 0 ext{ iff } x eq 0$		

Real IP Spaces	\rightsquigarrow	Orthogonal Geometries
\mathbb{R}^{d}	\rightsquigarrow	\mathbb{F}_{q}^{d} , where $q = p^{\ell}$ is odd.
		·1
Inner Products	\rightsquigarrow	Non-Degenerate Scalar Products
$\langle -, - \rangle : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$		$\langle -, - \rangle : \mathbb{F}_q^d \times \mathbb{F}_q^d o \mathbb{F}_q$
$\langle x,y angle = \langle y,x angle$	\rightsquigarrow	$\langle x, y \rangle = \langle y, x \rangle$
$\langle x, - angle : \mathbb{R}^d o \mathbb{R}$ linear		$\langle x,- angle:\mathbb{F}_q^d ightarrow\mathbb{F}_q$ linear
$\langle x,x angle > 0 ext{ iff } x eq 0$	\rightsquigarrow	$\langle x, y \rangle \neq 0$ for some $y \in \mathbb{F}_q^d$ iff $x \neq 0$

Real IP Spaces	\rightsquigarrow	Orthogonal Geometries
\mathbb{R}^{d}	\rightsquigarrow	\mathbb{F}_q^d , where $q=p^\ell$ is odd.
Inner Products	\rightsquigarrow	Non-Degenerate Scalar Products
$\langle -, - \rangle : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$		$\langle -, - \rangle : \mathbb{F}_q^d \times \mathbb{F}_q^d o \mathbb{F}_q$
$\langle x, y \rangle = \langle y, x \rangle$	\rightsquigarrow	$\langle x,y angle = \langle y,x angle$
$\langle x, - \rangle : \mathbb{R}^d \to \mathbb{R}$ linear		$\langle x,- angle: \mathbb{F}_{\boldsymbol{q}}^{\boldsymbol{d}} ightarrow \mathbb{F}_{\boldsymbol{q}}$ linear
$\langle x,x angle > 0 ext{ iff } x eq 0$	\rightsquigarrow	$\langle x,y angle eq 0$ for some $y\in \mathbb{F}_q^d$ iff $x eq 0$

Example: Non-degeneracy as a proof of being non-zero

 $V = \mathbb{F}_3^3 \text{ with } \langle x, y \rangle = x^{\mathsf{T}}y \text{ the dot product.}$ $x = \begin{bmatrix} 1\\1\\1 \end{bmatrix} \quad \left\langle \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} \right\rangle = 0 \quad \left\langle \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\0 \end{bmatrix} \right\rangle = 1$

Discretizing Reality: Two Types of Orthogonal Geometries

Definition

A \mathbb{F}_q -vector space V is called non-degenerate if it has a non-degenerate scalar product. V is an orthogonal geometry.

 $V = \mathbb{F}_q^d$, with $\langle x, y \rangle = x^{\intercal} M y$, where $M = M^{\intercal}$ and is invertible

Discretizing Reality: Two Types of Orthogonal Geometries

Definition

A \mathbb{F}_q -vector space V is called non-degenerate if it has a non-degenerate scalar product. V is an orthogonal geometry.

 $V = \mathbb{F}_q^d$, with $\langle x, y \rangle = x^{\intercal} M y$, where $M = M^{\intercal}$ and is invertible

Classification: An orthogonal geometry V with $\langle x, y \rangle = x^{\mathsf{T}} M y$

- det M a square (i.e. $\exists z \in \mathbb{F}_q$, det $M = z^2$)
- det M not a square

Example: Non-square determinant

 $V = \mathbb{F}_{3}^{4} \text{ with } \langle x, y \rangle = x^{\mathsf{T}} M y, \text{ where } M = \text{Diag}(1, 1, 1, 2)$ $\left\langle \begin{bmatrix} 0\\0\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\0\\2\\2 \end{bmatrix} \right\rangle = \begin{bmatrix} 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0\\0 & 1 & 0 & 0\\0 & 0 & 1 & 0\\0 & 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} 1\\0\\0\\2\\2 \end{bmatrix} = 1$

Plato's Allegory of an Inner Product

Inner Product Spaces:

Plato's Allegory of an Inner Product

Inner Product Spaces:

- $\Phi = [\varphi_1, \dots, \varphi_n]$ and its Gram matrix $\Phi^* \Phi = [\langle \varphi_i, \varphi_j \rangle]$ give equivalent information.
- Subspaces of inner product spaces are inner product spaces

Plato's Allegory of an Inner Product

Inner Product Spaces:

- $\Phi = [\varphi_1, \dots, \varphi_n]$ and its Gram matrix $\Phi^* \Phi = [\langle \varphi_i, \varphi_j \rangle]$ give equivalent information.
- Subspaces of inner product spaces are inner product spaces

Orthogonal Geometries: Not the case. Consider an orthogonal geometry $V = \mathbb{F}_3^4$ with $\langle x, y \rangle = x^{\mathsf{T}}y$

$$\Phi = \begin{bmatrix} 1 & 0 \\ 2 & 1 \\ 2 & 2 \\ 0 & 1 \end{bmatrix} \quad \Phi^{\dagger} \Phi = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \quad \mathrm{im} \, \Phi \subseteq V \text{ is degenerate.}$$

Frame Theory (Greaves, Iverson, Jasper, Mixon; 2022), (J 2025)

Let $\Phi = [\varphi_1, \varphi_2 \dots, \varphi_n] \in \mathbb{F}_q^{d imes n}$, $a, b, c \in \mathbb{F}_q$. Then Φ is a

- frame for $\operatorname{im} \Phi$ if $\operatorname{im} \Phi$ is non-degenerate $\Leftrightarrow \mathsf{rk}(\Phi) = \mathsf{rk}(\Phi^{\dagger}\Phi)$
- *c*-tight frame for $\operatorname{im} \Phi$ if $\Phi \Phi^{\dagger} \Phi = c \Phi$
- (a, b)-equiangular if

•
$$\langle \varphi_j, \varphi_j \rangle = a$$
 for all j
• $\langle \varphi_j, \varphi_k \rangle^2 = b$ for all $j \neq k$

• (a, b, c)-equiangular tight frame(ETF) if all the above.

Frame Theory (Greaves, Iverson, Jasper, Mixon; 2022), (J 2025)

Let
$$\Phi = [\varphi_1, \varphi_2 \dots, \varphi_n] \in \mathbb{F}_q^{d imes n}$$
, $a, b, c \in \mathbb{F}_q$. Then Φ is a

- frame for $\operatorname{im} \Phi$ if $\operatorname{im} \Phi$ is non-degenerate $\Leftrightarrow \mathsf{rk}(\Phi) = \mathsf{rk}(\Phi^{\dagger}\Phi)$
- *c*-tight frame for $\operatorname{im} \Phi$ if $\Phi \Phi^{\dagger} \Phi = c \Phi$
- (a, b)-equiangular if

•
$$\langle \varphi_j, \varphi_j \rangle = a$$
 for all j
• $\langle \varphi_j, \varphi_k \rangle^2 = b$ for all $j \neq k$

• (a, b, c)-equiangular tight frame(ETF) if all the above.

Example:
$$V = \mathbb{F}_5^2$$
 with $\langle x, y \rangle = x^{\intercal} M y$, where $M = \text{Diag}(1, 3)$

$$\Phi = \begin{bmatrix} 0 & 2 & 3 \\ 2 & 1 & 1 \end{bmatrix} \qquad \Phi^{\dagger} \Phi = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$$

 Φ is an (2, 1, 3)-ETF for \mathbb{F}_5^2 of n = 3 vectors.

Frame Theory: 4 \times 10 ETF

Example (Greaves, Iverson, Jasper, Mixon 2022)

 $V = \mathbb{F}_3^4$ with $\langle x, y \rangle = x^{\mathsf{T}} M y$, where $M = \mathsf{Diag}(1, 1, 1, 2)$

$$\Phi = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 2 & 2 \\ 1 & 1 & 0 & 0 & 0 & 0 & 1 & 2 & 1 & 2 \\ 1 & 2 & 1 & 2 & 1 & 2 & 0 & 0 & 0 \end{bmatrix}$$

 Φ is an (0, 1, 0)-ETF for \mathbb{F}_3^4 of n = 10 vectors.

Frame Theory: 4 \times 10 ETF

Example (Greaves, Iverson, Jasper, Mixon 2022)

 $V = \mathbb{F}_3^4$ with $\langle x, y \rangle = x^{\mathsf{T}} M y$, where $M = \mathsf{Diag}(1, 1, 1, 2)$

$$\Phi = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 2 & 2 \\ 1 & 1 & 0 & 0 & 0 & 0 & 1 & 2 & 1 & 2 \\ 1 & 2 & 1 & 2 & 1 & 2 & 0 & 0 & 0 \end{bmatrix}$$

 Φ is an (0,1,0)-ETF for \mathbb{F}_3^4 of n = 10 vectors.

- Φ is a maximal ETF for \mathbb{F}_3^4
- No 4 \times 10 real ETF is known to exist
- Contains 30 regular 3-simplices: 15 square geometry, 15 non-square geometry, both pairs of 15 form (10, 4, 2)-BIBDs

The Welch Bound Revisited

Theorem (Greaves, Iverson, Jasper, Mixon; 2022)

If $\Phi \in \mathbb{F}_q^{d \times n}$ is a (a, b, c)-ETF then $d(n-1)b = (n-d)a^2$ (if the field is nice: $b = \frac{n-d}{d(n-1)}a^2$)

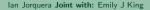
Theorem (Greaves, Iverson, Jasper, Mixon; 2022)

If $\Phi \in \mathbb{F}_q^{d \times n}$ is a (a, b, c)-ETF then $d(n-1)b = (n-d)a^2$ (if the field is nice: $b = \frac{n-d}{d(n-1)}a^2$)

Example: $V = \mathbb{F}_5^7$ with $\langle x, y \rangle = x^{\mathsf{T}} y$

	Γ0	0	0	0	0	0	0	2 0 2 3 3 1
	0	0	0	0	0	1	2	0
	0	0	0	0	2	4	2	0
$\Phi =$	0	0	0	0	2	4	0	2
	0	1	1	2	1	2	2	3
	1	0	1	2	3	2	2	3
	[1	1	0	2	3	4	4	1

 Φ is an (2, 1)-equiangular frame for V. It satisfies $b \equiv 1 \equiv \frac{1}{49}2^2 \equiv \frac{n-d}{d(n-1)}a^2$.



Theorem (Greaves, Iverson, Jasper, Mixon; 2022)

If $\Phi \in \mathbb{F}_q^{d \times n}$ is a (a, b, c)-ETF then $d(n-1)b = (n-d)a^2$ (if the field is nice: $b = \frac{n-d}{d(n-1)}a^2$)

Example: $V = \mathbb{F}_5^7$ with $\langle x, y \rangle = x^{\mathsf{T}} y$

	Γ0	0	0	0	0	0	0	2 0 2 3 3 1
	0	0	0	0	0	1	2	0
	0	0	0	0	2	4	2	0
$\Phi =$	0	0	0	0	2	4	0	2
	0	1	1	2	1	2	2	3
	1	0	1	2	3	2	2	3
	[1	1	0	2	3	4	4	1

 Φ is an (2,1)-equiangular frame for V. It satisfies $b \equiv 1 \equiv \frac{1}{49}2^2 \equiv \frac{n-d}{d(n-1)}a^2$. But Φ is not a tight frame

Theorem (Greaves, Iverson, Jasper, Mixon; 2022)

If $\Phi \in \mathbb{F}_q^{d \times n}$ is a (a, b, c)-ETF then $d(n-1)b = (n-d)a^2$ (if the field is nice: $b = \frac{n-d}{d(n-1)}a^2$)

Example: $V = \mathbb{F}_5^7$ with $\langle x, y \rangle = x^{\mathsf{T}} y$

	Γ0	0	0	0	0	0	0	2]		[3	3	2	3	3	3	2	4]	
	0	0	0	0	0	1	2	0		3	3	2	3	4	0	3	1	
	0	0	0	0	2	4	2	0		3	4	2	4	1	3	3	1	
$\Phi =$	0	0	0	0	2	4	0	2	$\Phi \Phi^\dagger \Phi =$	4	0	1	0	1	3	1	3	
	0	1	1	2	1	2	2	3		2	1	4	2	0	2	1	3	
	1	0	1	2	3	2	2	3		0	3	2	0	1	4	4	1	
	[1	1	0	2	3	4	4	1		[1	0	0	1	3	0	1	0	

 Φ is an (2,1)-equiangular frame for V. It satisfies $b \equiv 1 \equiv \frac{1}{49}2^2 \equiv \frac{n-d}{d(n-1)}a^2$. But Φ is not a tight frame

- Triple Product: $\Delta(\varphi_j, \varphi_k, \varphi_\ell) = \langle \varphi_j, \varphi_k \rangle \langle \varphi_k, \varphi_\ell \rangle \langle \varphi_\ell, \varphi_j \rangle$
- Sums of triple products have been used to study the algebraic properties of frames by (Appleby et. al.; 2011), (Zhu; 2015), and (King; 2019).

- Triple Product: $\Delta(\varphi_j, \varphi_k, \varphi_\ell) = \langle \varphi_j, \varphi_k \rangle \langle \varphi_k, \varphi_\ell \rangle \langle \varphi_\ell, \varphi_j \rangle$
- Sums of triple products have been used to study the algebraic properties of frames by (Appleby et. al.; 2011), (Zhu; 2015), and (King; 2019).

Let \mathbb{F}_q be a field with $q = p^{\ell}$ elements, $p \nmid dn$

Theorem (J)

Let $\Phi = [\varphi_1, \dots, \varphi_n] \in \mathbb{F}_q^{d \times n}$ be an (a, b)-equiangular frame for \mathbb{F}_q^d $(a \neq 0)$. Then Φ is an (a, b, na/d)ETF if and only if

- Triple Product: $\Delta(\varphi_j, \varphi_k, \varphi_\ell) = \langle \varphi_j, \varphi_k \rangle \langle \varphi_k, \varphi_\ell \rangle \langle \varphi_\ell, \varphi_j \rangle$
- Sums of triple products have been used to study the algebraic properties of frames by (Appleby et. al.; 2011), (Zhu; 2015), and (King; 2019).

Let \mathbb{F}_q be a field with $q = p^{\ell}$ elements, $p \nmid dn$

Theorem (J)

Let $\Phi = [\varphi_1, \dots, \varphi_n] \in \mathbb{F}_q^{d \times n}$ be an (a, b)-equiangular frame for \mathbb{F}_q^d $(a \neq 0)$. Then Φ is an (a, b, na/d)ETF if and only if

•
$$d(n-1)b = (n-d)a^2$$

- Triple Product: $\Delta(\varphi_j, \varphi_k, \varphi_\ell) = \langle \varphi_j, \varphi_k \rangle \langle \varphi_k, \varphi_\ell \rangle \langle \varphi_\ell, \varphi_j \rangle$
- Sums of triple products have been used to study the algebraic properties of frames by (Appleby et. al.; 2011), (Zhu; 2015), and (King; 2019).

Let \mathbb{F}_q be a field with $q = p^{\ell}$ elements, $p \nmid dn$

Theorem (J)

Let $\Phi = [\varphi_1, \dots, \varphi_n] \in \mathbb{F}_q^{d \times n}$ be an (a, b)-equiangular frame for \mathbb{F}_q^d $(a \neq 0)$. Then Φ is an (a, b, na/d)ETF if and only if

•
$$d(n-1)b = (n-d)a^2$$

• $\sum_{\ell=1}^{n} \langle \varphi_j, \varphi_k \rangle \langle \varphi_k, \varphi_\ell \rangle \langle \varphi_\ell, \varphi_j \rangle = \frac{nab}{d}$ for all $j \neq k$

- Triple Product: $\Delta(\varphi_j, \varphi_k, \varphi_\ell) = \langle \varphi_j, \varphi_k \rangle \langle \varphi_k, \varphi_\ell \rangle \langle \varphi_\ell, \varphi_j \rangle$
- Sums of triple products have been used to study the algebraic properties of frames by (Appleby et. al.; 2011), (Zhu; 2015), and (King; 2019).

Let \mathbb{F}_q be a field with $q = p^{\ell}$ elements, $p \nmid dn$

Theorem (J)

Let $\Phi = [\varphi_1, \dots, \varphi_n] \in \mathbb{F}_q^{d \times n}$ be an (a, b)-equiangular frame for \mathbb{F}_q^d $(a \neq 0)$. Then Φ is an (a, b, na/d)ETF if and only if

•
$$d(n-1)b = (n-d)a^2$$

• $\sum_{\ell=1}^{n} \langle \varphi_j, \varphi_k \rangle \langle \varphi_k, \varphi_\ell \rangle \langle \varphi_\ell, \varphi_j \rangle = \frac{nab}{d}$ for all $j \neq k$

- This theorem is also true for unitary geometries.
- For certain finite fields, Φ need not be a frame.
- Works for any field, not just finite fields.

lan Jorquera Joint with: Emily J King

Additional Results

On the Structure of Frames and Equiangular Lines over Finite Fields and their Connections to Design Theory (arXiv:2505.12175)

• For ETFs, containing regular simplices is more or less determined by collections of vectors having equal triple products.

Additional Results

On the Structure of Frames and Equiangular Lines over Finite Fields and their Connections to Design Theory (arXiv:2505.12175)

- For ETFs, containing regular simplices is more or less determined by collections of vectors having equal triple products.
- Expanded on the theory of Naimark complements from (Greaves, Iverson, Jasper, Mixon; 2022), showing that in general $\Phi^{\dagger}\Phi + \Psi^{\dagger}\Psi = cI$ is not sufficient and an additional condition is needed.

Additional Results

On the Structure of Frames and Equiangular Lines over Finite Fields and their Connections to Design Theory (arXiv:2505.12175)

- For ETFs, containing regular simplices is more or less determined by collections of vectors having equal triple products.
- Expanded on the theory of Naimark complements from (Greaves, Iverson, Jasper, Mixon; 2022), showing that in general $\Phi^{\dagger}\Phi + \Psi^{\dagger}\Psi = cI$ is not sufficient and an additional condition is needed.
- Generalized Gillespie incoherent sets, showing ETFs in orthogonal geometries that saturated a incoherence bound, often give rise to quasi-symmetric 2-designs, and 4-designs in special cases.

Questions

$$\Phi = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 2 & 2 \\ 1 & 2 & 1 & 2 \end{bmatrix}$$

An (0,1,1)-ETF for \mathbb{F}_3^3

Ian Jorquera Joint with: Emily J King