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Line Packings: Can you pack n lines in Rd or Cd , where every
line is maximally spread apart?

Goal: Maximize pairwise acute angles, or minimize cos2 θ

Given n lines, represent each by a unit vector

Φ =

 | | |
φ1 φ2 · · · φn

| | |

 ∈ Fd×n

New Goal: Minimize max
i ̸=j

| ⟨φi , φj⟩ |2
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Finding Optimal Packings

Given n lines in Rd or Cd , represented each by a unit vector

Φ =

 | | |
φ1 φ2 · · · φn

| | |


New Goal: Minimize max

i ̸=j
| ⟨φi , φj⟩ |2

Welch bound

max
i ̸=j

| ⟨φi , φj⟩ |2 ≥
n − d

d(n − 1)

With equality if and only if

• Equiangular: | ⟨φi , φj⟩ |2 = b for all i ̸= j

• Tightness: ΦΦ∗ = cI

}
Φ is an ETF
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Understanding Optimal Line Packings

Optimal line packings are understood in two ways

Geometrically as ETFs

• Equiangular: i ̸= j
| ⟨φi , φj⟩ |2 = b

• Tightness: ΦΦ∗ = cI

Combinatorially with

b =
n − d

d(n − 1)
• n = # lines

• d = dimension

Example: Optimal line packing in R2 (an ETF)

Φ =

[
1 −1

2 −1
2

0
√
3
2 −

√
3
2

]

θ =
2π

3
and b = | − 1/2|2 = 1/4 =

3− 2

2(3− 1)

Goal of talk: Do this but over finite fields.
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Line Packings over Finite Fields
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Discretizing Reality: Finite Field Analog to Rd

Real IP Spaces ⇝ Orthogonal Geometries
Rd ⇝ Fd

q , where q = pℓ is odd.

Inner Products ⇝ Non-Degenerate Scalar Products

⟨−,−⟩ : Rd × Rd → R ⟨−,−⟩ : Fd
q × Fd

q → Fq

⟨x , y⟩ = ⟨y , x⟩ ⇝ ⟨x , y⟩ = ⟨y , x⟩
⟨x ,−⟩ : Rd → R linear ⟨x ,−⟩ : Fd

q → Fq linear
⟨x , x⟩ > 0 iff x ̸= 0 ⇝ ⟨x , y⟩ ≠ 0 for some y ∈ Fd

q iff x ̸= 0

Example: Non-degeneracy as a proof of being non-zero

V = F3
3 with ⟨x , y⟩ = x⊺y the dot product.

x =

11
1

 〈11
1

 ,

11
1

〉 = 0

〈11
1

 ,

10
0

〉 = 1
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Discretizing Reality: Two Types of Orthogonal Geometries

Definition

A Fq-vector space V is called non-degenerate if it has a
non-degenerate scalar product. V is an orthogonal geometry.

V = Fd
q , with ⟨x , y⟩ = x⊺My , where M = M⊺ and is invertible

Classification: An orthogonal geometry V with ⟨x , y⟩ = x⊺My
• detM a square (i.e. ∃z ∈ Fq, detM = z2)
• detM not a square

Example: Non-square determinant

V = F4
3 with ⟨x , y⟩ = x⊺My , where M = Diag(1, 1, 1, 2)

〈
0
0
1
1

 ,


1
0
0
2


〉

=

[
0 0 1 1

] 
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 2



1
0
0
2

 = 1
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Plato’s Allegory of an Inner Product

Inner Product Spaces:

• Φ =
[
φ1, . . . , φn

]
and its Gram matrix Φ∗Φ = [⟨φi , φj⟩] give

equivalent information.

• Subspaces of inner product spaces are inner product spaces

Orthogonal Geometries: Not the case. Consider an orthogonal
geometry V = F4

3 with ⟨x , y⟩ = x⊺y

Φ =


1 0
2 1
2 2
0 1



Φ†Φ =

[
0 0
0 0

]

imΦ ⊆ V is degenerate.
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Frame Theory (Greaves, Iverson, Jasper, Mixon; 2022), (J 2025)

Let Φ =
[
φ1, φ2 . . . , φn

]
∈ Fd×n

q , a, b, c ∈ Fq. Then Φ is a

• frame for imΦ if imΦ is non-degenerate ⇔ rk(Φ) = rk(Φ†Φ)

• c-tight frame for imΦ if ΦΦ†Φ = cΦ
• (a, b)-equiangular if

• ⟨φj , φj⟩ = a for all j
• ⟨φj , φk⟩2 = b for all j ̸= k

• (a, b, c)-equiangular tight frame(ETF) if all the above.

Example: V = F2
5 with ⟨x , y⟩ = x⊺My , where M = Diag(1, 3)

Φ =

[
0 2 3
2 1 1

]
Φ†Φ =

2 1 1
1 2 −1
1 −1 2



0 1 2 3 4
0
1
2
3
4

Φ is an (2, 1, 3)-ETF for F2
5 of n = 3 vectors.
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Frame Theory: 4× 10 ETF

Example (Greaves, Iverson, Jasper, Mixon 2022)

V = F4
3 with ⟨x , y⟩ = x⊺My , where M = Diag(1, 1, 1, 2)

Φ =


0 0 0 0 1 1 1 1 1 1
0 0 1 1 0 0 1 1 2 2
1 1 0 0 0 0 1 2 1 2
1 2 1 2 1 2 0 0 0 0


Φ is an (0, 1, 0)-ETF for F4

3 of n = 10 vectors.

• Φ is a maximal ETF for F4
3

• No 4× 10 real ETF is known to exist

• Contains 30 regular 3-simplices: 15 square geometry, 15
non-square geometry, both pairs of 15 form (10, 4, 2)-BIBDs
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The Welch Bound Revisited
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On the Failure of a Welch Bound

Theorem (Greaves, Iverson, Jasper, Mixon; 2022)

If Φ ∈ Fd×n
q is a (a, b, c)-ETF then d(n − 1)b = (n − d)a2

(if the field is nice: b = n−d
d(n−1)a

2)

Example: V = F7
5 with ⟨x , y⟩ = x⊺y

Φ =



0 0 0 0 0 0 0 2
0 0 0 0 0 1 2 0
0 0 0 0 2 4 2 0
0 0 0 0 2 4 0 2
0 1 1 2 1 2 2 3
1 0 1 2 3 2 2 3
1 1 0 2 3 4 4 1


Φ is an (2, 1)-equiangular frame for V .
It satisfies b ≡ 1 ≡ 1

492
2 ≡ n−d

d(n−1)a
2. But Φ is not a tight frame
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On the Failure of a Welch Bound

Theorem (Greaves, Iverson, Jasper, Mixon; 2022)
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On the Failure of a Welch Bound

Theorem (Greaves, Iverson, Jasper, Mixon; 2022)

If Φ ∈ Fd×n
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4 0 1 0 1 3 1 3
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A New Hope: Using Sums of Triple Products

• Triple Product: ∆(φj , φk , φℓ) = ⟨φj , φk⟩ ⟨φk , φℓ⟩ ⟨φℓ, φj⟩
• Sums of triple products have been used to study the algebraic
properties of frames by (Appleby et. al.; 2011), (Zhu; 2015),
and (King; 2019).

Let Fq be a field with q = pℓ elements, p ∤ dn

Theorem (J)

Let Φ =
[
φ1, . . . , φn

]
∈ Fd×n

q be an (a, b)-equiangular frame for

Fd
q (a ̸= 0). Then Φ is an (a, b, na/d)ETF if and only if

• d(n − 1)b = (n − d)a2

•
n∑

ℓ=1

⟨φj , φk⟩ ⟨φk , φℓ⟩ ⟨φℓ, φj⟩ =
nab

d
for all j ̸= k

• This theorem is also true for unitary geometries.
• For certain finite fields, Φ need not be a frame.
• Works for any field, not just finite fields.
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A New Hope: Using Sums of Triple Products
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Let Φ =
[
φ1, . . . , φn

]
∈ Fd×n

q be an (a, b)-equiangular frame for

Fd
q (a ̸= 0). Then Φ is an (a, b, na/d)ETF if and only if
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d(n − 1)b = (n − d)a2

•

n∑
ℓ=1

⟨φj , φk⟩ ⟨φk , φℓ⟩ ⟨φℓ, φj⟩ =
nab

d
for all j ̸= k

• This theorem is also true for unitary geometries.
• For certain finite fields, Φ need not be a frame.
• Works for any field, not just finite fields.
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Additional Results

On the Structure of Frames and Equiangular Lines over Finite
Fields and their Connections to Design Theory (arXiv:2505.12175)

• For ETFs, containing regular simplices is more or less
determined by collections of vectors having equal triple
products.

• Expanded on the theory of Naimark complements from
(Greaves, Iverson, Jasper, Mixon; 2022), showing that in
general Φ†Φ+Ψ†Ψ = cI is not sufficient and an additional
condition is needed.

• Generalized Gillespie incoherent sets, showing ETFs in
orthogonal geometries that saturated a incoherence bound,
often give rise to quasi-symmetric 2-designs, and 4-designs in
special cases.
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Questions

Φ =

1 1 1 1
1 1 2 2
1 2 1 2


An (0, 1, 1)-ETF for F3

3
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