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Line Packings: Can you pack n lines in R? or C?, where every
line is maximally spread apart?

Goal: Maximize pairwise acute angles, or minimize cos? 6
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Line Packings: Can you pack n lines in R? or C?, where every

line is maximally spread apart?

KA

Goal: Maximize pairwise acute angles, or minimize cos? 6

Given n lines, represent each by a unit vector

(D: 801 302 SOn eFan

New Goal: Minimize mix] (pis @) |2
i#]
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Finding Optimal Packings

Given n lines in RY or C9, represented each by a unit vector

. |
q): SD]- g02 (Pn

New Goal: Minimize m;x\ (i, o) |
i#]
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Finding Optimal Packings

Given n lines in RY or C9, represented each by a unit vector

. |
d): SD]. SD2 Spn

New Goal: Minimize max | (¢;, ¢;) |
i#]

Welch bound

S
|
LY

d
2
max | (@i, @j) |© =
i {00 | d(n—1)

With equality if and only if

* Equiangular: | (i, ;) [2 = b for all i # ] } & is an ETF
® Tightness: ®¢* = ¢/ @
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Understanding Optimal Line Packings

Optimal line packings are understood in two ways

Geometrically as ETFs Combinatorially with
e Equiangular: j # j b — %
| (eivei) P = b (n=1)

e Tightness: do* = ¢/ ® n= # lines
e d = dimension

@
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Understanding Optimal Line Packings

Optimal line packings are understood in two ways
Geometrically as ETFs

Combinatorially with

e Equiangular: j # j b — %
| (i, ¢3) =t ° n(f ;ﬁ I)ines
e Tightness: ®¢* = ¢/ a

® d = dimension
Example: Optimal line packing in R? (an ETF)

i
*=1, & _3
2 2

21 3—-2

=" and b=|-1/22=1/4=—"—
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Understanding Optimal Line Packings

Optimal line packings are understood in two ways
Geometrically as ETFs

Combinatorially with

e Equiangular: j # j b — %
| (i, ¢3) =t ° n(f ;ﬁ I)ines
e Tightness: ®¢* = ¢/ a

® d = dimension
Example: Optimal line packing in R? (an ETF)

1 -} -
*=1, & _3
2 2

27 3-2

0=— d b=|-1/2P=1/4= — —

Goal of talk: Do this but over finite fields.
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Line Packings over Finite Fields

@
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Discretizing Reality: Finite Field Analog to R

Real IP Spaces ~ Orthogonal Geometries
R ~ IFf’,, where g = p’ is odd.
Inner Products ~» Non-Degenerate Scalar Products
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Discretizing Reality: Finite Field Analog to R

Real IP Spaces ~ Orthogonal Geometries
R ~ IFf’,, where g = p’ is odd.

Inner Products ~» Non-Degenerate Scalar Products
(—,—):RIxRY - R
(x,y) = (y,x)

(x,—) : R? = R linear
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Discretizing Reality: Finite Field Analog to R

Real IP Spaces ~ Orthogonal Geometries
R ~ IFd, where g = p’ is odd.
Inner Products ~» Non-Degenerate Scalar Products

(—,—):RIxRY =R
(x,y) = (v %)

(x,—) : R? = R linear
(x,x) >0iff x#0

e
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Discretizing Reality: Finite Field Analog to R

Real IP Spaces ~ Orthogonal Geometries
R ~ IFf’,, where g = p’ is odd.
Inner Products ~» Non-Degenerate Scalar Products
(—,—):RIxRY - R <—,—>:IF‘§’,><IF2—>IF,7
<X, = (¥, x) (X y) =y, X)
(x,—) : RY — R linear (x,—): IFg — Fq linear
(x,x) >0iff x#0

e
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Discretizing Reality: Finite Field Analog to R

Real IP Spaces ~ Orthogonal Geometries
R ~ IFf’,, where g = p’ is odd.
Inner Products ~» Non-Degenerate Scalar Products
(—,—):RIxRY - R (—, >'IF‘d><IFg—>IFq
<X, = (¥, %) (X y) = (y,x)
(x,—) : RY — R linear (x,—): IFd — Fq linear
(x,x) >0iff x#0 ~ <X,y)7é0forsomey€IF‘d|fFX7éO

e
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Discretizing Reality: Finite Field Analog to R

Real IP Spaces ~ Orthogonal Geometries
R ~ IFZ, where g = p’ is odd.
Inner Products ~» Non-Degenerate Scalar Products
(—,—):RIxRY - R (—, >'IF‘d><IFg—>IE<‘q
<X, = (¥, %) (X y) = (y,x)
(x,—) : RY — R linear (x,—): IFd — Fq linear
(x,x) >0iff x#0 ~ <X,y>7$0forsomeyEIFd iff x£0

Example: Non-degeneracy as a proof of being non-zero

V = F$ with (x,y) = xTy the dot product.
1 1 1 1 1
x= |1 <1,1>:0<1,0>:1
1 1 1 1 0
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Discretizing Reality: Two Types of Orthogonal Geometries

A Fg-vector space V is called non-degenerate if it has a
non-degenerate scalar product. V is an orthogonal geometry.

_wd i _ _ . .
V =g, with (x,y) = xTMy, where M = MT and is invertible

@
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Discretizing Reality: Two Types of Orthogonal Geometries

Definition

A Fg-vector space V is called non-degenerate if it has a
non-degenerate scalar product. V is an orthogonal geometry.

_wd i _ _ _ :
V =g, with (x,y) = xTMy, where M = MT and is invertible
Classification: An orthogonal geometry V with (x,y) = xTMy

® det M a square (i.e. 3z € Fy, det M = 22)
® det M not a square

Example: Non-square determinant

V = F% with (x,y) = xTMy, where M = Diag(1,1,1,2)
0] [1 0 0 1 1]t 0 0 0] 1
0| [of\ _ 0 10 0[]0 _,
1|0/ — 0 0 1 0| (0]
1| |2 0 00 2| |2
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Plato’s Allegory of an Inner Product

Inner Product Spaces:
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Plato’s Allegory of an Inner Product

Inner Product Spaces:

® &= [p1,...,9n] and its Gram matrix ®*® = [(p;, ¢;)] give
equivalent information.

® Subspaces of inner product spaces are inner product spaces
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Plato’s Allegory of an Inner Product

Inner Product Spaces:

® &= [p1,...,9n] and its Gram matrix ®*® = [(p;, ¢;)] give
equivalent information.

® Subspaces of inner product spaces are inner product spaces

Orthogonal Geometries: Not the case. Consider an orthogonal
geometry V = F§ with (x,y) = xTy

0 0

fp —
ol [00

} im® C V is degenerate.

O NN
= N = O
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Frame Theory (Greaves, Iverson, Jasper, Mixon; 2022), (J 2025)

Let ® = [p1,02...,¢n] €FI*" a,b,c € Fq. Then ®is a
e frame for im ® if im ® is non-degenerate < rk(®) = rk(¢Td)
e c-tight frame for im ¢ if PdTd = cd
® (a, b)-equiangular if
* (pj.pj) =aforallj
* (o, 0k)° = bforall j # k
® (a, b, c)-equiangular tight frame(ETF) if all the above.
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Frame Theory (Greaves, Iverson, Jasper, Mixon; 2022), (J 2025)

Let ® = [p1,02...,¢n] €FI*" a,b,c € Fq. Then ®is a
e frame for im @ if im ® is non-degenerate < rk(®) = rk(¢T®)

e c-tight frame for im ¢ if PdTd = cd

® (a, b)-equiangular if

® (pj,pj) = aforall j
° <<pj,g0k>2 =bforall j # k

® (a, b, c)-equiangular tight frame(ETF) if all the above.

Example: V = F2 with (x,y) = xTMy, where M = Diag(1, 3)

2 1

¢:[02 ] dfd=11 2 -1

2 1 1

1 -1 2 P

oOrRLrNNWH

® is an (2,1,3)-ETF for F2 of n = 3 vectors.
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Frame Theory: 4 x 10 ETF

Example (Greaves, Iverson, Jasper, Mixon 2022)
V = F% with (x,y) = xTMy, where M = Diag(1,1,1,2)

0

= = O O
N = O O
N O = O
= O O =
N O O
[ I e O
ON = =
O N -
ONN

1
0
1

® is an (0,1,0)-ETF for F4 of n = 10 vectors.

@
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Frame Theory: 4 x 10 ETF

Example (Greaves, lverson, Jasper, Mixon 2022)

V = F% with (x,y) = xTMy, where M = Diag(1,1,1,2)

= = O O
N m O O

0
1
0
1

N O = O
= O O =
N O O
[ I e O
ON = =
O N -
ONN

® is an (0,1,0)-ETF for F4 of n = 10 vectors.

® & is a maximal ETF for ]F"3l
® No 4 x 10 real ETF is known to exist

e Contains 30 regular 3-simplices: 15 square geometry, 15
non-square geometry, both pairs of 15 form (10, 4,2)-BIBDs
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The Welch Bound Revisited

@
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On the Failure of a Welch Bound

Theorem (Greaves, lverson, Jasper, Mixon; 2022)

If ® € F9*"is a (a, b, ¢)-ETF then d(n —1)b = (n — d)a?

(if the field is nice: b= 529 a?)

@
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On the Failure of a Welch Bound

Theorem (Greaves, lverson, Jasper, Mixon; 2022)

If ® € F9*"is a (a, b, ¢)-ETF then d(n —1)b = (n — d)a?

(if the field is nice: b= 529 a?)

Example: V = F{ with (x,y) = xTy

00O0O0OOTO?2
0000O0OT120
00002420
¢=(0 0 0 0 2 40 2
01121223
10123 223
1102 3 4 4 1]
® is an (2, 1)-equiangular frame for V.
e —1 =1 — _n=d
It satisfies b=1= 4522 = maz. @
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On the Failure of a Welch Bound

Theorem (Greaves, lverson, Jasper, Mixon; 2022)

If ® € F9*"is a (a, b, ¢)-ETF then d(n —1)b = (n — d)a?

(if the field is nice: b= 529 a?)

Example: V = F{ with (x,y) = xTy

00000O0T 0 2
00000120
00002420
®=10 0002 4 0 2
01121223
10123223
11023 4 4 1]

® is an (2, 1)-equiangular frame for V.
It satisfies b= 1= ;522 = df’n;_dl)az. But @ is not a tight frame @
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On the Failure of a Welch Bound

Theorem (Greaves, lverson, Jasper, Mixon; 2022)

If ® € F9*"is a (a, b, ¢)-ETF then d(n —1)b = (n — d)a?
(if the field is nice: b= 1% 3%)

d(n—1)
Example: V = F{ with (x,y) = xTy
[0 0 0 0 0 0 0 2] (3 3 2 3 3 3 2 4]
000O0O0120 33234031
00002420 342 41331
=10 0 0 0 2 4 0 2| odfd=14 01 013 1 3
01121223 21 4 2 0 21 3
10123 2 23 0 3201441
1 1 0 2 3 4 4 1] 1 001 3 0 1 0]

® is an (2, 1)-equiangular frame for V.
It satisfies b= 1= ;522 = dE’n;_dl)az. But @ is not a tight frame @

lan Jorquera Joint with: Emily J King Saturating the Welch Bound for Frames over Finite Fields 12 /15



A New Hope: Using Sums of Triple Products

® Triple Product: A(g;j, ¢k, ve) = (pj, 0k) (¢k: o) (e, ¢j)

® Sums of triple products have been used to study the algebraic
properties of frames by (Appleby et. al.; 2011), (Zhu; 2015),
and (King; 2019).
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A New Hope: Using Sums of Triple Products

® Triple Product: A(pj, ¢k, ) = (@), k) (@K, e) (Pe; ;)
® Sums of triple products have been used to study the algebraic
properties of frames by (Appleby et. al.; 2011), (Zhu; 2015),
and (King; 2019).
Let Fy be a field with g = p’ elements, p{dn

Theorem (J)

Let & = [gol, . ,cpn] € IFgX” be an (a, b)-equiangular frame for
Fg (a#0). Then ® is an (a, b,na/d)ETF if and only if

@
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A New Hope: Using Sums of Triple Products

® Triple Product: A(pj, ¢k, ) = (@), k) (@K, e) (Pe; ;)
® Sums of triple products have been used to study the algebraic
properties of frames by (Appleby et. al.; 2011), (Zhu; 2015),
and (King; 2019).
Let Fy be a field with g = p’ elements, p{dn

Theorem (J)

Let & = [gol, . ,cpn] € IFgX” be an (a, b)-equiangular frame for
Fg (a#0). Then ® is an (a, b,na/d)ETF if and only if
® d(n—1)b= (n— d)a?
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A New Hope: Using Sums of Triple Products

® Triple Product: A(pj, ¢k, ) = (@), k) (@K, e) (Pe; ;)
® Sums of triple products have been used to study the algebraic
properties of frames by (Appleby et. al.; 2011), (Zhu; 2015),
and (King; 2019).
Let Fy be a field with g = p’ elements, p{dn

Theorem (J)

Let & = [gol, . ,cpn] € IFgX” be an (a, b)-equiangular frame for
Fg (a#0). Then ® is an (a, b,na/d)ETF if and only if
® d(n—1)b=(n—d)a?
4 nab .
* D " {0i, k) (o 02} (02, 0)) = — forallj#k

/=1

@
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A New Hope: Using Sums of Triple Products

® Triple Product: A(pj, ¢k, ) = (@), k) (@K, e) (Pe; ;)
® Sums of triple products have been used to study the algebraic
properties of frames by (Appleby et. al.; 2011), (Zhu; 2015),
and (King; 2019).
Let Fy be a field with g = p’ elements, p{dn

Theorem (J)
Let & = [gol, e @n] € IFgX” be an (a, b)-equiangular frame for
Fg (a#0). Then ® is an (a, b,na/d)ETF if and only if

® d(n—1)b= (n— d)a?

nab .
* ) {0 o) (prs P2} (00, p7) = — forallj # k
/=1

® This theorem is also true for unitary geometries.
® For certain finite fields, ® need not be a frame.
® Works for any field, not just finite fields.
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Additional Results

On the Structure of Frames and Equiangular Lines over Finite
Fields and their Connections to Design Theory (arXiv:2505.12175)

® For ETFs, containing regular simplices is more or less
determined by collections of vectors having equal triple
products.
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Additional Results

On the Structure of Frames and Equiangular Lines over Finite
Fields and their Connections to Design Theory (arXiv:2505.12175)
® For ETFs, containing regular simplices is more or less
determined by collections of vectors having equal triple
products.
® Expanded on the theory of Naimark complements from
(Greaves, lverson, Jasper, Mixon; 2022), showing that in
general ®Td + WV = ¢/ is not sufficient and an additional
condition is needed.

N7
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Additional Results

On the Structure of Frames and Equiangular Lines over Finite
Fields and their Connections to Design Theory (arXiv:2505.12175)

® For ETFs, containing regular simplices is more or less
determined by collections of vectors having equal triple
products.

® Expanded on the theory of Naimark complements from
(Greaves, lverson, Jasper, Mixon; 2022), showing that in
general ®Td + WV = ¢/ is not sufficient and an additional
condition is needed.

® Generalized Gillespie incoherent sets, showing ETFs in
orthogonal geometries that saturated a incoherence bound,
often give rise to quasi-symmetric 2-designs, and 4-designs in
special cases.

N7
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Questions

1111
=111 2 2
121 2
An (0,1,1)-ETF for F3
/
//Ss

L ®
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