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Random walk statistics can help distinguish between different types of anomalous diffusion. Look-
ing at fractional Brownian motion and random walks on fractal-like structures we compute the mean
square displacement, the power spectral density and its coefficient of variance in order to better un-
derstand the differences in these types of subdiffusion. We found noticeable differences in the power
spectral densities for FBM and random walks on percolation structures at criticality, suggesting
such a statistic would be effective in differentiating different types of subdiffusion. The coefficient
of variance we saw that both FBM and random walks on percolation structures were relatively
indistinguishable,.

I. INTRODUCTION

In this paper we will look at random walk statistics,
such as the power spectral density(PSD) and its coeffi-
cient of variation and use these to help determine the
structure random walks. In this paper we will restrict
our analysis to two different instance of ergodic anoma-
lous subdiffusion: random walks on percolation struc-
tures at criticality and fraction Brownian motion (FBM)
with H < 1

2 . Anomalous diffusion is when the mean
squared displacement of a random walk grows accord-
ing to a power law over time, that is ⟨r2(t)⟩ ∼ tα for
α ̸= 1, and anomalous subdiffusion is the particular case
where 0 < α < 1. Ergodicity, is the case where a ran-
dom walk experiences aging which can be seen when the
temporal MSD varies with the total time interval being
observed. Anomalous diffusion occurs frequently in bi-
ological processes such as in macromolecular crowding,
transient binding[1], diffusion in plasma membranes[2],
protein configurations, and in modeling the movement of
water molecules on the surface of proteins[3].

However the cause of anomalous behavior can vary
greatly, anomalous diffusion can be the result of contin-
uous time random walks (in which case the random walk
is non-ergodic), fractional Brownian motion, and random
walks on fractal structures[2, 4]. The cases of anomalous
diffusion we are interested in are the cases where the
anomalous diffusion is the result of the structure of the
walk itself (either in the correlation between steps or the
landscape in which the walk occurs) and is not related
to time intervals between steps. Distinguishing which
model best represents the anomalous diffusion is impor-
tant in determining properties of the underlying diffusion
being modeled, and can give insights into the biological
processes. The PSD in particular has been shown to be
stable on individual trajectories of fractional Brownian
motion which is why we are considering this statistic in
the context of random walks on fractals[1]. Often data
sets may not contain enough data for stable ensemble
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averages, and so statistics that are stable on individual
trajectories are of great interest.
In section II we will look at the theoretical and numeri-

cal properties of fractional Brownian motion (FBM), and
random walks of percolation structures at, or near, crit-
icality. We will also present the power spectral density
and its coefficient of variation. In section III we will use
numerical simulations to simulate both fractional Brown-
ian motion and random walks on percolation structures,
in which we will compute the mean squared displace-
ments and the statistics presented in section II to distin-
guish different types of diffusion.

II. THEORETICAL DERIVATIONS

In this section we will present the construction of both
fractional Brownian motion and random walks on perco-
lation structures. As well as the definitions for the power
spectral density (PSD) and its coefficient of variation, as
well as known results for FBM.

A. Fractional Brownian Motion

Fractional Brownian motion is often used to model
movement in crowded or viscoelastic fluids such as
the cytoplasm of cells or modeling the movement of
polymers[5, 6]. FBM is determined by its autocorrela-
tion function, where for any t1 and t2, ⟨r(t1)r(t2)⟩ =
K(t2H2 + t2H1 −|t2− t1|2H), where 0 < H < 1 is the Hurst
exponent and ⟨r2(t)⟩ ∼ t2H . In this paper we will restrict
our interest to the case of subdifussion, when H < 1

2 ,
which correspond to steps being negatively correlated,
with an increased likely hood that steps will change di-
rection. Fraction Brownian Motion is the most general
Gaussian process and so encapsulated a large number of
instances of subdiffusion[1]. A realization of subdiffusive
FBM is shown in figure 1. The authors of [7] present dif-
ferent approaches for modeling fractional Brownian mo-
tion but for this paper we have used the Matlab imple-
mentation of the function wfbm for each dimension of
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FIG. 1. A realization of n = 10000 steps of subdiffusive frac-
tional Brownian motion with Hurst exponent H = .35

our 2 dimensional realizations. Our implementation can
be found in the appendix.

B. Random Walks on Fractals

The second case of anomalous subdiffuion we will fo-
cus on is the case of a random walk on a fractal. Fractals
can occur commonly in nature, sometimes in unexpected
ways and so are an important topic of research. The cor-
tical cytoskeleton of kidney cells has been shown to be
a scale-free fractal[3]. Fractal structures are also found
in epidemiology and in tracking forest fires to model as-
pects of spread [8] and in modeling walks on infinite (or
pseudo-infinite) graphs[9]. Generally random walks on
fractals are done by first generating a fractal (a com-
mon example is the Serpinski Gasket) or a fractal-like
lattice (such as a percolation structure) and then hav-
ing a random walker jump randomly along the available
sites[10, 11]. To simulate our random fractals we will
create percolation structures at critically. A percolation
structure is a multidimensional grid where each cell, or
site, can either exist with probability p or not. This
means we can generate a percolation structure by gen-
erating a multi-dimensional binary array where each site
exists with probability p. For our purposes we will look
at percolation structures at critically meaning p = pc the
probability of criticality, at which point an infinite cluster
exists and the percolation structure shares the properties
of a random fractal[10].

A random walk on a fractal will walk along the per-
colation structure by jumping between adjacent existing
sites. This means the possible directions a walker can
take will vary depending on where the walker is on the
percolation structure. This also leads to backtracking
where the walker has to retrace its self at each dead end
along the walk. On a 2 dimension grid where a walker

FIG. 2. An infinite cluster in a percolation on a square lattice
with p ≈ pc, from [10]. Sites not on the infinite cluster have
been removed for clarity

can move in any of the 4 direction: up, down, left, right
it is know that pc ≈ 0.59275, an infite cluster on such a
percolation structure is shown in figure 2. In our anal-
ysis we will focus on percolation structures of this type.
It also know that the fractal dimension of such a perco-
lation structure is df = 1.896 and the dimension of any
walk on this percolation structure is dw ≈ 2.878, mean-
ing we expect to see the MSD to be ⟨r2(t)⟩ ∼ tα where
α ≈ 0.69[10].

C. The Power Spectral Density

For a realization, or a random trajectory of length
T , we can write the trajectory a as sequence of steps
(Rt)t, which represent a realization of a random walk
over the time interval from 0 to T , where for each step

Rt = (X
(1)
t , X

(2)
t , . . . , X

(d)
t ) and the component X

(i)
t rep-

resent the length of the step in the i-dimension. The com-
ponents of the walk in each dimension can be thought of
as a statistically independent 1-dimensional walks and
so we will focus our analysis on the PSD in one fixed di-
mension. The PSD over an arbitrary fixed dimension j
is then defined as the Fourier transform in equation 1[1].

S(f, T ) =
1

T

∣∣∣∣∣
∫ T

0

exp(ift)X
(j)
t dt

∣∣∣∣∣
2

(1)

The general PSD over all dimensions is the the sum
over all dimensions j, but from the statistical indepen-
dence of each dimension this would be proportional to
the PSD in a single dimension. Equation 1 gives us the
PSD for a single trajectory, which we can extend to an
ensemble average over multiple runs, which we will de-
note as ⟨S(f, T )⟩.
It is known that the ensemble PSD for subdiffusive

fractional Brownian motion (where H < 1
2 ) follows a
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power law ⟨S(f, T )⟩ ∼ 1/fβ where β = 2H + 1[1].
The PSD is a widely used tool in engineering fields

for determining the roughness of surfaces[12, 13]. This
idea can provide a useful intuition behind the meaning
of the PSD in the context of random walk, and sug-
gest the PSD encapsulates some fundamental structure
of the random walk. The PSD is also used in a variety
of other applications such as tracking the fluctuations of
current in electrodes[14], and studying the intervals be-
tween earthquakes[15].

D. The Coefficient of Variance of the Power
Spectral Density

The final statistic we will present is the coefficient of
variance of the PSD. In the previous section we presented
the ensemble average, or mean, of the power spectral
density, denoted as ⟨S(f, T )⟩. In a similar vein we can
also talk about the variance and standard deviation of
the PSD over many realizations. And so σ2 = ⟨S(f, T )2⟩.
We can then define the coefficient of variance of the PSD
as shown in equation 2.

γ =
σ

µ
=

√
⟨S(f, T )2⟩
⟨S(f, T )⟩

(2)

In the case of subdiffusive fractional Brownian motion
(where H < 1

2 ), the coefficient of variance γ → 1 when
ω = fT → ∞. This is true for an FBM process with
H < 1

2 . The coefficient of variance is different for when

H = 1
2 and when H > 1

2 [1].

III. NUMERICAL SIMULATIONS AND
RESULTS

In this section we will compute, numerically, the en-
semble MSD, PSD and the coefficient of variance for ran-
dom walks on fractals and fraction Brownian motion and
compare the results with the theoretical expectations of
FBM.

First we will simulate random walks on fractals, using
percolation structures. An example realization is shown
in figure 3. We then computed 7000 realizations of ran-
dom walks with 4500 steps. We then computed the en-
semble MSD to be ⟨r2(t)⟩ ∼ t0.707 (as compared to the
predicted value of α = 0.69), which is shown in figure
4. This corresponds to the fractal dimension of the walk
being dw = 2.83 (as compared to the theoretical value
of 2.878). It is important to note that we considered
only the realizations on the infinite cluster, this means
we excluded any realization that visited too few distinct
sites. See Appendix for the implementation on how we
achieved this.

To compare random walks on percolation structures
to FBM, we then generated 5000 realizations of FBM

FIG. 3. A realization of n = 45000 steps of a random walk
on a percolation with p ≈ pc

FIG. 4. A log-log linearization of the ensemble MSD for ran-
dom walks on fractals

with Hurst exponent H = .35 which will correspond to a
theoretical MSD that grows at roughly the same rate as
the fractal walk. We verified the ensemble MSD of these
realizations and found ⟨r2(t)⟩ ∼ t0.709, which matched
the theoretical predictions and the the random walks on
percolations structures. A linearized MSD for FBM is
show in figure 5.

FIG. 5. A log-log linearization of the ensemble MSD for frac-
tional Brownian motion
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FIG. 6. A log-log linearization of the ensemble PSD for frac-
tional Brownian motion

FIG. 7. A log-log linearization of the ensemble PSD for ran-
dom walks on fractals

At this point both ensemble MSDs seem to correspond
to similar instances of anomalous sub diffusion as both
share the same power law for their MSDs. However both
instances were generated using vastly different methods.
We then compared the two statistics presented in section
II. First we computed the PSD for each set of instances.
First for fractional Brownian motion we found that the
ensemble PSD (shown in figure 6) grows as the power law
⟨S(f, T )⟩ ∼ 1/f1.703, which aligns with the theoretical
prediction of β = 1.7.
We then computed the ensemble PSD for the random

walks on percolation structures at criticality. We found
that the ensemble PSD (shown in figure 7) grows as the
power law ⟨S(f, T )⟩ ∼ 1/f1.802. Notice that the power
laws for FBM and random walks on fractals differ which
indicated that the PSD and power law growth is in fact
an effective way to distinguish between FBM and ran-
dom walks on fractals. This also suggest that these two
instances of sub-diffusion have different in there structure
even though they have similar MSDs.

Next we will look at the coefficient of variance, which
is computed according to equation 2 where we look at

the limiting behavior for large ω = fT . For fractional
Brownian motion we computed γ ≈ 1.0045 which aligns
with the theoretical prediction of 1. Similarly for the
random walks on the percolation structures we computed
γ ≈ 1.0174 which seems to be indistinguishable from the
coefficient of variance for FBM. This indicates that the
coefficient of variance does not accurately distinguish be-
tween FBM and random walks of fractals. This result,
with the known theoretical result of fraction Brownian
motion, also suggest that the coefficient of variance may
be common result amongst all instances of anomalous
subdiffusion, that of a coefficient of variance equal to 1.
However more types of subdiffusion need to be considered
for such a conclusion.

Percolation structures are easy to generate but do not
represent a wide variaty of fractal like stuctures. Per-
colation structures only share the properties of fractals
when the probability p of a site existing is near criticality
pc. Otherwise random walks on percolation structures
may act more similar to those on finite graphs or that
of normal diffusion. This limitation of the variability of
percolation structures acts as a major limitation to our
results. Further research can be done looking at a vari-
ety of different percolation structures, and on well defined
fractals.

IV. CONCLUSION

In this paper we looked at the random walk statistics
of power spectral density and the coefficient of variance
to determine how either statistic could be used to dis-
tinguish between different instances of anomalous subd-
iffusion. We looked at fractional Brownian motion and
random walks on fractal like structures. We found that
there was likely a noticeable difference between the power
law growth of FBM and random walks on a percolation
structures at criticality, indicating that the PSD would
be a good statistic for distinguishing between different
types of subdiffusion. This also suggests random walks
on fractals have a different fundamental structure then
random walks with fractional Brownian motion. For the
coefficient of variance we saw that both FBM and random
walks on percolation structures were relatively indistin-
guishable. This suggest the coefficient of variance may be
a common statistic for many types of subdiffusion, with
different structure, but can not be used to distinguish
them.

Appendix A: Simulations

Code for this project can be found our the github
https://github.com/jorqueraian/walking-randomly
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