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1 Introduction

This project aims to give an overview of the results and techniques in Three proofs of the Benedetto-
Fickus theorem, written by Shonkwiler et. al. This paper uses different techniques from differential
geometry that can give some insight into different geometrical strategies to working with unit norm
tight frames that are used through out the field of frame theory.

Unit norm tight frame are generalizations of orthonormal bases, in the sense that they are a
collection of spanning vectors in a finite d-dimensional Hilbert space H in which a generalization
of the pythagorean theorem holds. This is equivalent to the standard definition, that Φ ∈ Hn is a
unit norm tight frame if ||φj || = 1 for all columns of Φ and ΦΦ† = n

d Id, where Φ† is the adjoint
with respect to the underlying inner product of H.

We will assume that H = Cd, and an important observation is that these unit norm tight frames
live in the manifold S(d, n) of d×n complex matrices with columns having unit norm. And that unit

norm tight frames are the minimizers of the frame potential FP(Φ) = ||Φ∗Φ||2F = tr(Φ∗ΦΦ∗Φ).
The Benedetto-Fickus theorem then tells us that S(d, n) has no spurious local minimizers.

Through out we wish to highlight many of the ideas in this paper in the real setting, but we
will also highlight how this paper generalizes their results into the setting of complex frames, such
as using the Wirtinger gradient.

2 The Manifolds in Question

Through out we will assume that F is either R or C and we will consider the matrices Fd×n whose
columns are unit norm, with respect to the dot product or conjugate dot product for Fd. These
matrices form the set

SF(d, n) = {Z ∈ Fd×n| ||zi|| = 1} ⊆ Fd×n

where zi is the ith column of Z. Consider the function f : Fd×n → Fn by Z 7→ (||z1|| , . . . , ||zn||)
where we can see that f−1((1, 1, . . . , 1)) = S(d, n). Notice also that the all ones vector is a regular
value, which follows from the fact that the norm Fd → R has 0 as its only critical value and the
zero vector the only critical point. Using the level set theorem this means

dim(SR(d, n)) = (d− 1)n and dim(SR(d, n)) = (2d− 1)n

Alternatively, for Z ∈ S(d, n) each column zj is a unit vector meaning it lives on the unit circle, S
in Fd, which reaffirms the above dimension counting. This means that for any element Z ∈ S(d, n)
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the tangent space can be interpreted column wise, where for each column zj the tangent space
TzjS = z⊥j is the orthogonal compliment of zj . Meaning TZS(d, n) are the matrices whose columns

are orthogonal to the respective columns of Z. S(d, n) and Fd×n can both be considered to be
Riemann manifold with Riemannian metric being the Frobinous inner product defined as

⟨A,B⟩F = tr(A∗B)

for all A,B ∈ Fd×n.
An important statistic on this manifold is that of the frame potential, FP : S(d, n) → R

defined as
FP(Φ) = ||Φ∗Φ||2F = tr(Φ∗ΦΦ∗Φ)

which can also be defined on Fd×n and will be denoted as EP : Fd×n → R. A well known result,

known as the Welch bound, says that FP(Z) ≥ n2

d . Equality occurs when Z is a tight frame,
meaning ZZ∗ = n

d I or equivalently when the columns of Z are an eigenvectors of the matrix
ZZ∗ with eigenvalues n

d . We also note that tight frames are therefore critical points of the frame
potential.

Through out will will also be interested in the spanning properties of frames, namely the size of
the smallest dependence set, which we will define the be the spark.

Definition 1. Let Z ∈ Fd×n whose columns are vectors in Fd and will be denoted as zj . Then the
spark of Z is defined as

sparkZ = min{m | (zjk)mk=1 is linearly dependent, j1 < j2 < · · · < jm}

If spark(Z) = d+ 1 then we say Z is full spark.

A system of lines being full spark means any subset of d vectors forms a basis for Fd. In general
1 ≤ spark(Z) ≤ rank(Z) + 1, which suggests that while the rank encapsulates the maximal (linear)
independence of a collection of vectors the spark in a sense encapsulates the worst-case, or minimal
dependence, of a collection of vectors. The spark captures a sense of how mutually redundant the
vectors are. We also note that full spark frames are dense in Cd×n

3 Gradient

The Benedetto-Fickus theorem then tells us that S(d, n) has no spurious local minimizers, and
therefore gradient descent would be an effective algorithm for numerically finding tight frames. So
we need to first define a notion of gradient for optimization. First we will look at the euclidean
gradient which can be defined on the greater space of all matrices Fd×n and then we will look at a
gradient intrinsic to the Riemannian manifold S(d, n). For a euclidean space Rn with the standard
dot product. The euclidean gradient, ∇f , of a function f : Rn → R can written as the vector
field

∇f =

n∑
j=1

∂f

∂xj

∂

∂xj

With the musical isomorphisms (−)♭ : X(Rn) → Ω1(Rn) , defined as X♭(Y ) = X · Y we can see
that (∇f)♭(Y ) = ∇f · Y = df(Y ). In fact we will take this is the definition of the Riemmannian
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gradient which will will see later: the vector field which satisfies (∇f)♭(Y ) = df(Y ), or likewise
(∇f)V = (df)♯.

In the complex setting it is helpful to define a similar notion of gradient in terms of the complex
structure. For complex euclidean space with coordinates z1, . . . zn we can define the function gRn×
Rn → Cn defined so that (x, y) 7→ z + iy. In this case we consider the complex coordinate to be
combinations of real coordinates x1, . . . , xn and y1, . . . , yn where zj = xj + iyj . We can then define
the Wirtinger gradient to be

∂f

∂z̄
:=

n∑
k=1

∂f

∂z̄k

∂f

∂z̄

where
∂f

∂z̄k
:=

1

2

(
∂(f ◦ g)
∂xk

+ i
∂(f ◦ g)
∂yk

)
◦ g−1

is the Wirtinger derivative. It can be shown that that the euclidean gradient with respect to the
real coordinates ∇f = 2∂f

∂z̄ . We note that in general the Wirtinger derivatives can be computed
by formally differentiating f with respect to the complex conjugate z̄k in the case where f is a
polynomial.

Example 2. Consider the function f(x) = ||x||2 = x∗x. In the case where F = R we can show that
(∇f)(x) =

∑
2xj

∂
∂xj

and likewise when F = C we can compute the Wirtinger derivatives: ∂f
∂z̄k

= zk

which gives us that (∇f)(z) =
∑

2zj
∂

∂zj

This process of formal differentiation also helps us prove the following lemma, about the eu-
clidean gradient of the frame potential in Cd×n.

Lemma 3. For Z ∈ Cd,n the euclidean gradient of the frame potential EP : Cd×n → R is
∇EF (Z) = 4ZZ∗Z

Proof.

It is important to note that the euclidean gradient will in general not respect the manifold
structure of S(d, n), and in general the euclidean gradient may not live in the tangent bundle
TS(d, n). In general for a Riemann manifoldM with metric g we will define the Riemann gradient of
a function F : M → R to be the vector field gradf that satisfies (gradf)♭(Y ) = g(gradf, Y ) = df(Y )
for all vector fields Y in the same sense as the euclidean gradient, but now using the intrinsic
Riemannian metric. In the case whereM is imbedded in some larger euclidean space the Riemannian
gradient at any point p ∈ M is the orthogonal projection of the euclidean gradient onto the tangent
space at p. Because the tangent spaces of S(d, n) depend on the columns of Z ∈ S(d, n), in
constructing the Riemannian gradient, we can define it column wise. Consider a column zj of
Z ∈ S(d, n) and let (∇f)(zj) be the euclidean gradient, the Riemannian gradient would then be

(gradf)(zj) = ProjTzj
S(∇f)(zj) = Projz⊥

j
(∇f)(zj) = (∇f)(zj)− ((∇f)(zj) · zj)zj .

Therefore for Z ∈ S(d, n) the Riemannian gradient would just be the euclidean gradient projected,
columns-wise, in this way giving

(grad FP )(Z) = ProjTZS(d,n)4ZZ∗Z

We are now ready to state a strengthening of the Benedetto-Fickus Theorem, when n > d
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Theorem 4. Fix positive integers n > d and let F : S(d, n)× [0,∞) → S(d, n) be the gradient flow,
defined as the solution to the following differential equations

F (Z, 0) = Z
d

dt
F (Z, t) = −gradFP (F (Z, t))

Then for Z ∈ S(d, n) being full spark we have that limt→∞ F (Z, t) is a unit norm tight frame.

We note that this proves the Benedetto-Fickus Theorem, stated in the intro, as for any critical
point Z0, and any neighborhood around Z0 there would be a full spark frame, which would flow to
a unit norm tight frame. So Z0 would not be a local minimizer.

Although we will not provide a full proof of this theorem we will walk through the key parts
which utilize ideas from geometric invariant theory. First we want to find a property on full spark
frames of S(d, n) which is invariant under gradient flow, such that no critical point that is not a unit
norm tight frame satisfies this property. Let V = (Cd)⊗n and consider the action of SL(d) such
that g · (z1 ⊗ · · · ⊗ zn) = (g · z1 ⊗ · · · ⊗ g · zn). We can define the map τ(Z) = z1 ⊗ · · · ⊗ zn and then
we will say Z is semi-stable if the closure of the orbit of τ(Z) under the action of SL(d) contains
zero, that is cl(Gτ(Z)) contain zero. It can be shown that every full spark matrix is semi-stable
and any critical point that is not a unit norm tight frame is not semi-stable.

We then want to show that the property of semi-stability, is invariant under gradient flow, which
can be done by showing the process of gradient flow, is an action by SL(d) or more precisely that for
any t ∈ [0,∞) the matrix F (Z, t) is in the orbit of Z under the action of SL(d)× (C×)n. And every
element in the closure of this orbit is semi-stable under SL(d). Therefore the limit is semi-stable
and so must be a critical point that is a unit norm tight frame.
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